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Abstract

by

AYMANAHI_DABDALLAH

Component mode synthesis (CMS) is a method of dynamic

analysis, for structures having a large number of degrees of

freedom (D.O.F.). These structures often required lengthy

computer CPUtime and large computer memoryresources, if solved

directly by the flnite-element method (FEM). In CMS, the

structure is divided into independent components in which the

D.O.F. are defined by a set of generalized coordinates defined by

displacement shapes. The number of the generalized coordinates

are much less than the original number of physical D.O.F., In the

component. The displacement shapes are used to transform the

component property matrices and any applied external loads, to a

reduced system of coordinates. Reduced system property matrices

are assembled, and any type of dynamic analysis is carried out In

the reduced coordinate system. Any obtained results are back

transformed to the original component coordinate systems. In all

conventional methods of CMS, the mode shapes used for components,
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are dynamic mode shapes, supplemented by static deflected shapes.

Historically, all the dynamic mode shapes used in conventional CMS

are the natural modes (eigenvectors) of components.

This work presents a new method of CMS, namely the boundary

flexibility vector method of CMS. The method provides for the

incorporation of a set of static Ritz vectors, referred to as

boundary flexibility vectors, as a replacement and/or supplement

to conventional eigenvectors, as displacement shapes for

components. The generation of these vectors does not require the

solution of a costly eigenvalue problem, as in the case of natural

modes in conventional CMS, and hence a substantial saving in CPU

time can be achieved. The boundary flexibility vectors are

generated from flexibility (or stiffness) properties of

components. The formulation presented is for both free and

fixed-interface components, and for both the free and forced

vibration problems. Free and forced vibration numerical examples

are presented to verify the accuracy of the method and the saving

in CPU time. Compared to conventional methods of CMS, the results

indicate that by using the new method, more accurate results can

be obtained with a substantial saving in CPU time.
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Chapter 1

Introduction

Since the late fifties and early sixties, there has been

rapid advancement in the field of structural dynamics. The

primary cause of this advancement was the introduction of digital

computers and the associated analytical software which made the

application of numerical methods to dynamic analysis problems more

feasible. The most powerful of these numerical techniques was the

finite element method, which can be considered the basis for a new

era in the field of mathematics (more precisely in the solution of

partial differential equations), and consequently many fields of

science, including structural dynamics.

Previous to the finite element method, there existed other

approximate methods of analysis, such as Rayleigh's method in

dynamic analysis. The main disadvantage of this type of analysis

is that it requires the assumption of reasonably accurate mode

shapes for the structure, which is not always readily

accomplished, especially in large and complex structures.

Compared to these previous methods of analysis, the finite element

method is more accurate, more direct (no mode shapes need to be

assumed) and can be applied to a structure of any degree of

complexity.

Following the finite element method, a new modeling

technique, namely component mode synthesis (CMS), was introduced

by Hurty [I] in the mid-sixties. Component mode synthesis is a



method of dynamic substructuring, in which the structure is

divided into independent components or substructures. The main

motivation for introducing the method arose in the dynamic

analysis of large structures, having a large number of physical

degrees of freedom. These large structures usually required

lengthy computer CPU time and large computer memory resources,

when solved by finite elements directly. By using CMS, savings in

computer time and memory can be attained. Moreover, other

advantages can also be attained through the use of dynamic

substructuring such as:

I- Independent design and analysis efforts for various components

of a structure.

2- Reducing effort if system can be divided into identical

repetitive components having the same constraints and

displacement modes.

3- The incorporation of experimental and analytical data can be

achieved, for the characterization of components.

4- Reducing computational cost of a reanalysis, in case not all

components are modified.

The saving in CPU time and computer memory is achieved by

reducing the number of degrees of freedom, associated with each

component. This is accomplished by defining the displacements of

each component by a set of generalized coordinates, consisting of

the amplitudes of a corresponding set of mode shapes. In all

conventional CMS methods, the mode shapes used are dynamic mode
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shapes, supplemented by static deflected shapes. All the dynamic

modes historically used in CMS, are natural modes of vibration

(eiEenvectors) for the component.

This work presents a new method of CMS, namely the boundary

flexibility vector method of CMS, which is based upon utilizing a

set of static Ritz vectors, as displacement shapes for components.

The generation of these vectors, referred to herein as "boundary

flexibility vectors", does not require the solution of a costly

eigenvalue problem, as in the case of natural modes in traditional

CMS. Thus, a substantial saving in computer time is obtained.

The presented method is general and can be utilized for any type

of dynamic analysis.

This work is divided into six chapters. Chapter one is an

introduction to the work. Chapter two is a brief review of

traditional methods of CMS, and previous work in the application

of static Ritz vectors in structural dynamics. The formulation of

the boundary flexibility method of CMS is presented in chapter

three. The presented formulation is for both fixed and

free-interface components. Also, a hybrid boundary flexibility

and traditional CMS formulation is presented. A comparison of the

number of operations required to generate the boundary flexibility

vectors versus eigenvectors is given at the end of the chapter.

In chapter four, small and large free vibration problems are

utilized to verify the accuracy and CPU time saving of the new

method compared to finite element representations and traditional



methods of CMS. Chapter five presents the formulation of the

boundary flexibility method of CMS for the forced vibration

problem. An example is solved numerically by several methods and

for different loading conditions. The transient response is

compared for all methods. Chapter six includes a work summary,

conclusions and ideas for future work in this field.



Chapter 2

Literature Review

2. i) Introduction:

This chapter is divided into two main and independent parts.

The first part is a very brief review of component mode synthesis.

The main steps of CMS, classification of components and type of

displacement shapes are introduced in this part. Part two is a

detailed review of previous work, in the application of load

dependent Ritz vectors in structural dynamics.

2.2) Review of Component Mode Synthesis:

As mentioned before in chapter one, component mode synthesis

(CMS) was introduced by Hurry [I] in 1965. Since then, several

different variations of the method were introduced. However, the

main idea of reducing the number of degrees of freedom used to

characterize components, through use of a truncated set of mode

shapes and generalized coordinates, is common to all CMS methods.

A detailed review of CMS methods was given in a previous work [2]

by the author. The main steps of conventional CMS, as given in

reference [2], are summarized as follows:

I- Divide the system into independently characterized components.

Each component has a vector {u} of total physical degrees of

freedom (D.O.F.). (See Figure (I)). A component can be connected

to other components or to the Eround through a support, as shown

in Figure (I). The common boundary between components is the

interface. Let {u } be the vector of D.O.F. contained in the
C

S



interfaces of the component. Thus, {u} is partitioned into

{u.}{u} = (2.1)

u i

where {u i} = vector of internal D.O.F. in component.

= complement of {u } in {u}.
C

2- Define the displacement of each component by a set of mode

shapes a_ud generalized coordinates. The generalized coordinates

can be taken as the amplitudes of these mode shapes. The mode

shapes used contain static displacement shapes, as well as a

truncated set of natural modes of vibration. Usually a very small

numbeP of static and dynamic displacement shapes is required, to

obtain a good representation of the component in the new

coordinate system. Thus, the number of the new set of generalized

coordinates is generally much smaller than the original number of

physical D.O.F., in the component.

3- For each component, trarnsform the property matrices (mass,

stiffness and damping), from the physical coordinate system to the

new reduced system of generalized coordinates.

4- Couple all the components by enforcing displacement

compatibility requirements at the interfaces between components,

thereby assembling reduced system property matrices.

S- Perform any type of dynamic analysis (eiEenproblem solution,

transient or steady-state response,etc...) in the reduced

coordinate system of generalized coordinates.

8- Any obtained results are back tra/_sformed to the original
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system of physical D.O.F.

For all variations of C.M.S., within the individual

characterization of components, interface D.O.F. can be considered

either free or totally fixed. Accordingly, components can be

classified into either fixed or free-interface components. For a

detailed discussion and formulation of flxed-interface components

see Hurty [I], Abdallah [2], Craig and Bampton[3] and Craig [4].

While for free-interface componentssee Abdallah [2], MacNeal[5],

Rubin [8] and Martinez and Gregory [7]. The first investigator to

introduce fixed-interface components, was Hurty [I] in laSS, while

free-interface components were introduced by Goldman [8] in laSS.

The method of coupling components, introduced by Goldman [8], was

rather complicated. Several alternative methods of coupling

free-interface components were introduced by Hou [S], Dowell [I0]

and Abdallah [2]. In IS71, following Goldman's work, MacNeal [S]

gave a better understanding and representation of free-interface

components through the use of the idea of residual flexibility.

In IS7S, Rubin [8] expanded MacNeal's work to free-interface

components, having rigid body modes.

It should be noted that the decision to characterize

interface D.O.F. into free or fixed often depends on the type of

displacement shapes available to the analyst, i.e., the fixed or

free-interface type. It also depends on the judgment of the

analyst as to what level of constraint each component imposes on

the other. The displacement shapes, used for the characterization



of components, may be obtained either experimentally or

analytically. There are several different types of displacement

shapes used in the literature of C.M.S. They are summarized in

the following: For fixed-interface components:

I- Fixed-interface normal modes of vibration [@ ]: They are the
n

natural modes of vibration (or the eigenvectors), obtained from

solving the eigenvalue problem associated with the equation of

motion of the component. They are computed assuming all the

interface degrees of freedom fixed. Only a truncated set of

normal modes [@k] (kept modes) are used. Usually the low

frequency mode shapes are the ones used or kept.

2- Constraint modes [_ ]: A constraint mode {¢ } is defined as,
C C

the static displaced shape obtained by applying a unit

displacement at one interface D.O.F. while totally constraining

all other interface D.O.F. in the component. The number of

constraint modes used for each component is equal to the number of

interface D.O.F. in that component. The generalized coordinates

associated with these constraint modes, are usually taken as the

interface D.O.F. in components. Rigid-body modes can be included

in these constraint modes.

For free-interface components, the following displacement shapes

are used:

I- Free-interface normal modes of vibration [@ ]: They are the
n

same as in fixed-interface components except they are computed

assuming all interface D.O.F. free.



2- Rigid-body modes [_ ]: They are used for free-interface
r

components having no constraints preventing them from rigid-body

mot ion.

3- Attachment modes [_ ]: They are defined on a subset {u } of the
a a

total physical degrees of freedom {u}. An attachment mode {¢ } is
a

defined as the static displaced shape obtained by imposing a unit

force (or moment) on one D.O.F. of {u } with zero forces on all
a

remaining D.O.F. in {u }.
a

According to Meirovitch [II], Bamford

was the first investigator to introduce attachment modes in 1967.

They were used to account for the effect of concentrated loads on

unconstrained D.O.F.

4- Residual flexibility modes [_]: They are static displacement

shapes introduced by MacNeal [5] in 1971, to obtain a better

representation for free-interface components. (See (S)). They

were introduced to replace attachment modes as static mode shapes

for the component.

5- Inertia relief attachment modes [@ ]: They are the static
a

displacement shapes, for components having rigid-body modes,

analogous to attachment modes [@ ] in case of components having no
a

rigid-body modes. They were introduced by Rubin [6] in 197S.

6- Residual inertia relief attachment modes [@ ]: They are static

displacement shapes introduced by Rubin [6] in 197S. They were

introduced to be used for free-interface components having

rigid-body modes analogous to residual flexibility modes [@d].

used for components having no rigid-body modes.
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2.3) Review of Previous Work with Load-Dependent Ritz Vectors:

The application of load-dependent Ritz vectors was introduced

by Wilson et al. [12] in 1982. They were the first investigators

to point out the usefulness of load-dependent Ritz vectors in

dynamic analysis. The vectors were used to calculate transient

dynamic response by Ritz vector superposition. The load-dependent

Ritz vectors were used, instead of natural modes of vibration

Ceigenvectors), in a fashion equivalent to mode shapes. In all

presented examples, it was shown that the superposition of

load-dependent Ritz vectors yielded more accurate forced dynamic

response results, with fewer number of vectors, than if the

natural modes (eigenvectors) were used. Furthermore, the

load-dependent Ritz vectors are generated with less computational

effort than eigenvectors. The method used by Wilson et. al [12]

is summarized in the following:

Consider a damped system, having n degrees of freedom. Its

equation of motion is:

[M] {u} + [C] {u} + [K] {u} = {f(s)} g(t) (2.2)

where [M] = mass matrix of system

[C] = damping matrix of system

[K] = stiffness matrix of system

{u} = displacement vector

{u} = velocity vector

{u} = acceleration vector

{f(s)} = vector of spatial distribution of
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external load

gCt) = time-dependent amplitude of {fCs)}

The load-dependent Ritz vectors

algorithm given in reference [12].

I- Given [M], [K] and {f(s)}.

are generated by Wilson's

The main steps are as follows:

O

2- Solve for first vector {x } and normalize with respect to the

mass matrix to obtain {x }.
1

O

[K] {xI} = {f(s)}

, 112

{x} = {xI} / ( {x_}T [M] {x[} )

where {x[} T is the transpose of {x[}

3- Solve for additional vectors (i = 2,3,4 ....... L)

o

[K] {x,} = [M] {xl}__

- Orthogonalize with respect to [M], with all previous (i-l)

vectors

i-I

J=1

T •

= {xj} [M] {x }where c] i

QO

- Normalize vector {x i } with respect to [M] obtaining {xi}

I/2
oe

Ix} = {x['} / ( {x"}T_ [M] {xi } )

4- Orthogonalize all obtained vectors with respect to the

stiffness matrix [K] (optional step). This step is done as

follows:
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previously- Form [X] = matrix containing all

load-dependent Ritz vectors in its columns.

dimension is (n x L)

[A] = [X]T [K] [X]

[I] = [X] T [M] [X] = identity matrix of order L

- Solve the following reduced-order (L x L) eigenvaiue problem.

(Solve for {yi}, i = I....... L)

[ [A] - _2 [I] ] {Yi} ={O}l

where {yi} = i th eigenvector

2 .th
= i eigenvalue

i

- Compute final orthogonal vectors [X °] from

[X °] = IX] [Y]

calculated

Its

load-dependent Ritz vectors in its columns.

All vectors are orthogonal with respect to

the mass and stiffness matrices.

[Y] = an (L x L) matrix containing the

eigenvectors {yi} in its columns.

According to Wilson's algorithm, load-dependent Ritz vectors

can be defined as static displacement shapes generated from the

spatial distribution of the external loading applied on the

system. It can be seen that the initial load-dependent Ritz

vector is the static displacement of the system, due to the

applied load, while all subsequent vectors are obtained from the

where [X °] = an (n x L) matrix containing final
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inertial loading of the response. Thus, it is ensured that all

the generated load-dependent Ritz vectors, are excited by the

applied external load pattern, and hence, will contribute to the

response. While in the case where natural modes of vibration

(eigenvectors) are used, there could be mode shapes which

contribute little or nothing to the response (as the case of a

symmetric spatial distribution of load and an anti-symmetric mode

shape) even if the natural frequency of the mode shape is well

represented in the loading frequency content.

After obtaining the load-dependent Ritz vectors IX°], the

displacement vector {u} is approximated by

L

[ z,ct)
1=1

(2.3)

where Zl(t) = time-dependent generalized coordinates

associated with load-dependent vector i.

The mass, stiffness and damping matrices are transformed to a

reduced set of coordinates by:

[M'] = [X°] T [M] [X]

= identity matrix [I] of order L

[K'] = [x°]t [_:]Ix]

[C'] = [X°] T [C] [X] (2.4)

@ @ •

Where [M 1, [K ] and [C ] are the transformed property matrices.

@ •

[M ] and [K] are diagonal because the generated load-dependent

Ritz vectors [X °] are [M]-orthonormal and [K]-orthogonal. If

proportional damping is used,
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[C] = a [M] + a [K] (2. S)
o 1

where a and a are constants, then [C'] is also diagonal
o 1

Thus, the final system equations of motion are diagonalized and

reduced to L uncoupled, linear, second order, ordinary

differential equations, as follows:

[M'] {Z} + [C'] {Z} + [K'] {Z} = [X°] T {f(s)} g(t) (2 6)

These uncoupled equations are solved using any numerical

technique, obtaining the desired response. Wilson et al. [12]

also introduced an expression that provides an error estimation

for the dynamic analysis. As mentioned before, the numerical

examples introduced by Wilson indicate that by using a fewer

number of load-dependent Ritz vectors, more accurate results can

be obtained than by using eigenvectors.

In a paper by Nour-Omid and Clough [13] in 1984, it was shown

that by orthogonalizing any obtained load-dependent Ritz vector

with only the two preceding vectors (step 3 in Wilson's

algorithm), one can theoretically ensure orthogonality with all

previously calculated vectors. The main problem in this procedure

is that orthogonality can be lost due to roundoff errors,

accumulating from one step to another. Thus, orthogonality must

be checked, while generating each vector, by a certain scheme

given in reference [13]. Also, it was shown how the loss of

orthogonality can be corrected if it exceeds a certain tolerance

limit. The method of generating the load-dependent Ritz vectors

in reference [13], followed that outlined in Wilson's algorithm
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through step number three. Hence, no orthogonallzation was

carried out with respect to the stiffness matrix, hence avoiding

the solution of the (L x L) eigenvalue problem. The transformed

stiffness and damping matrices thus obtained are not diagonal.

However, it was shown in reference [13], that the equation of

motion (2.2) can be reduced to a tridlagonal form, through a

prescribed set of transformations. (Note that proportional

damping, given by equation (2.5), is used). The final transformed

equation of motion will be as follows:

CTL] {Z} + [ a ° CTL] + a I [IL] ] {7-} + {Z} = {e} g(t)

where
[T L ]

[IL]

{e}

(2.7)

= Transformed mass matrix of order L x L.

It is a tridiagonal matrix.

Transformed stiffness matrix.

Identity matrix of order L x L.

Transformation of {f(s)} vector.

elements are zeros

element is non-zero.

All its

except the first

aa, a%, {Z}, {7.}, {Z} and g(t) are as before.

As seen in equation (2.7), the excitation is applied only in the

first of these equations of motion. While equations 2, 3 ..... up

to L are equations of free vibration.

In another paper by Arnold et al. [14] in 1985, it was stated

that Wilson's algorithm had been implemented into the MSC/NASTRAN

program. The method presented by Wilson et al. [12] was applied

to structures having I000 degrees of freedom. The results
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presented in reference [14] showed that by using load-dependent

Ritz vectors, instead of elgenvectors, the following was obtained:

I- A saving of 90 %for eigenvalue extraction.

2- A saving of 60 %for response calculations.

In 1986, Wilson and Bayo [15] introduced load-dependent Ritz

vectors to fixed-lnterface component mode synthesis, in the

calculation of forced responses by dynamic substructuring. The

presented method had the following limitations:

I- The method is only suitable for forced vibration problems where

there are external loads, thus it cannot be applied to free

vibration problems.

2- The presented formulation is only applicable to fixed-interface

components.

3- The displacement shapes used for components are constraint

modes [_ ] and load-dependent Ritz vectors for components
O

having external loads. The load-dependent Ritz vectors are

generated from those external loads, assuming the interfaces of

components totally fixed. Thus, if there are no external loads

or they are applied at the interfaces of a component, then no

load-dependent Ritz vectors are generated for this component.

Hence, only constraint modes will be used, as displacement

shapes for such a component, and the component representation

is not expected to be good in that case. Wilson and Bayo

suggest, for such components, to generate load-dependent Ritz

vectors from a fictitious uniform external load, applied to the
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component. In the presented problems, the components were

planar beams and the fictitious uniform load was taken

perpendicular to the length of the beams. The assumption of

the uniform lozd does not have any theoreticzl basis and cannot

be justified for complex three-dimensional components, where an

assumption of a suitable uniform loadin E is not possible.



fl_e_ gUl'face inferface

Figure (2. I) - A Structural Component



Chapter 3

Boundary Flexibility Vector Method

of Component Mode Synthesis

3. i) Introduction:

The boundary flexibility vector method of CMS is presented in

this chapter. All of the underlying equations will be derived.

The method is described for both fixed and free-interface

components. It should be noted that the developed formulation has

many similarities to that of conventional CMS methods, thus

facilitating the combination of conventional normal modes and

boundary flexibility vectors, as a set of generalized coordinates

for components. The boundary flexibility Ritz vectors are

generated by an extension of Wilson's load-dependent Ritz vector

algorithm, (described in the previous chapter). The boundary

flexibility Ritz vectors are not, however, generated from external

loads, applied to the system. Thus, they can be incorporated into

both forced and free vibration problems. The generation of the

boundary flexibility Ritz vectors does not require the solution of

a costly eigenvalue problem, associated with the equation of

motion of a component. Hence, a substantial saving in CPU time is

generally achieved by using the boundary flexibility vectors

instead of the conventional eigenvectors.

To illustrate the boundary flexibility vector method of CMS,

a generic type of structural component will be used, as shown in

Figure (I). Assume the total number of D.O.F. in the component is

IS
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n. Let {u i} and {u } be the subvectors of internal and interface
C

degrees of freedom in component. The lengths of {u I} and {u } are
c

i and c respectively. Hence, the total displacement vector {u} is

partitioned into

{°°}{u} = (3. I)

U!

Accordingly, the mass [m] and stiffness [k] matrices of undamped

component, can be partitioned into:

[ oc,] kc,I[m] = cc and [k] = cc

[Olc] [mll [kl! [kil

(3.2)

The method will be presented in the following sections, for both

fixed and free-interface components.

3.2) Fixed-lnterface Boundary Flexibility Vector Method of CMS:

As mentioned before, the formulation can be based entirely on

the boundary flexibility Ritz vectors, or on a hybrid boundary

flexibility vector/conventional CMS formulation.

formulations are presented in the following:

3.2.1) Boundary-Flexibility Vector Formulation:

Consider the equation

fixed-interface component

The two

where

[mll {ul} + [kll {u i} = {f(s)} g(t) (3.3)

{u } = accelerstion vector of internal D.O.F.
!

{f(s)} and g(t) are as before in the previous

chapter.

of motion for the undamped
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The reason the equation is written in terms of the internal

D.O.F. {u i} only, is that the interface D.O.F. {u } are assumed
C

totally fixed, in the case of fixed-interface components. As the

interface D.O.F. are not actually fixed and they undergo

displacements within the motion of the whole system, then the

forcing function on the component can be considered as support

motions (accelerations) at the interface degrees of freedom. The

idea of the pseudostatic influence vectors, commonly used in

earthquake-response analysis (see Clough and Penzien [IS]), is

employed to obtain the loading function. According to reference

[16], a pseudostatic influence vector defines the static response

of the internal D.O.F. due to a unit displacement (motion) applied

at one support (interface) D.O.F. In case each interface D.O.F.

is subjected to a unit displacement, the total static response of

the component is obtained by superposition of the pseudostatic

influence vectors obtained from each independent unit

displacement. In case the load is defined by a unit acceleration

at one interface D.O.F., the pseudostatic influence vector is used

to define the distribution of the load (acceleration) within the

component. The definition of the pseudostatic influence vectors

is thus similar to that of the constraint modes [_ ], previously
C

defined in chapter (2). The size of matrix [_ ] is (n x c) and it
C

contains all the constraint modes {#J} in its columns, where j =
C

I, 2 ....... c. [_ ] is given by:
C
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(3.4)

where

[@i! is

equations

[I ] = identity matrix of order c
CC

[@il = part of constraint modes defining displacements

of interior D.O.F.

obtained from solving the lower partitions of the

Eko,]:[cPo ](3.5)

where [P ] = interface forces between components
CC

thus [_,! = -[k,t-' [k,!

For an acceleration Uclt) given at interface D.O.F. number j, the

forcing vector will be

{fj(s)} gj(t)=- [m t {¢_} {_clt) (3.6)

Thus the total forcing vectors of equation (3.3) is given by:

{f(s)} g(t) =-

C

l=l

(3.7)

The summation is carried out for all the accelerations applied at

all the D.O.F. contained in {u }.
C

It is clear that for the jth

forcing vector given by equation (3.6)

(3.8)

Thus the jth spatial distribution of the force is
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Wilson's algorithm can then be used to generate the boundary

flexibility Ritz vectors, from each of the derived spatial

distributions of forces. The jth starting vector {q[I is obtained

from {fjCs)} by

I

= c .,t c .1o 

Wilson's algorithm is used without the last step Cstep 4) of

orthogonalization with respect to the [k ] matrix. Each
II

subsequent vector in the jth set is then orthogonalized with

respect to the mass matrix, with all the previous vectors

generated in all the sets from I through j (step 3 in Wilson's

algorithm). Each generated vector is normalized with respect to

the mass matrix.

Let _ be the number of generated boundary flexibility Ritz

vectors. Let [Q_] be the matrix containing the generated vectors

in its coluntns. The size of [Q_] is (i x _). Let {p_} be the

vector containing _ generalized coordinates associated with the

generated boundary flexibility vectors. Then [@]c and [Q_] are

used to transform the coordinates, from a physical coordinate

system to a mixed physical and general ized one. The

transformation relation is as follows:

lu}luo}[El= [T] = cc

u p_ [@I]

[o] e

[Qel]{ %
(3.11)
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where [T] = transformation matrix of order (n) x (c+_)

It should be noted that the number of boundary flexibility

vectors, l, must be less than the total number of internal D.O.F.,

i, in the component, for any reduction of the total number of

D.O.F., to be achieved. This is usually the case, as a very small

number of boundary flexibility vectors,

obtain a good representation of a

illustrated in the numerical examples.

is often sufficient to

component, as will be

The transformation matrix

[T] is used to transform the property matrices, given in equation

(3.2), to the reduced mixed coordinate system. The final

transformed component mass matrix [_] and component stiffness

matrix [_] are as follows:

(,o+] (,.,++_][g] = IT]_ [ml (TI = [gl_] [_1_
(3.12)

where ] = [m ] + [_ ]'r [m t [_ ][P'cc cc ic ! lc

(,,_ : E,,++_: tQ_l"r.,t t®,+l

[_]tA = [Q_]T [roll [Q_] = [i]tA = identity

order I.

matrix of

[t_3 Er++++][£Z] = [T] z [k] IT] = [f_t..c] [n]_

(3.13)

where(_)oo: (k]o++ (kot(®,i: (k]oo- (kot(k,t-' (k,]
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For every component, the boundary flexibility vectors are formed,

and the transformation of coordinmtes is carried out to obtain

reduced property matrices. As all displacements of the interfaces

of the components are defined by physical D.O.F., then the

assembly of system property matrices, at the interfaces, is simply

done by direct summation of the interface portions of property

matrices of components, as in conventional direct stiffness

assembly of finite element property matrices. Any type of dynamic

analysis is carried out using the reduced assembled system

property matrices. Any obtained results are back transformed to

the physical coordinate system, by utilizing equation (3.11).

3.2.2) Hybrid Boundary Flexibility Vector/ Conventional CMS

Formulation:

The method can be applied for the general case where a

combination of boundary flexibility vectors and natural vibration

modes (eigenvectors), are used as displacement shapes of

components. This case could arise when the number of available

natural modes of vibrations, obtained from experiments, for

example, are insufficient to give adequate representation of a

component.

Let _ be the number of obtained boundary flexibility vectors,

k be the number of any kept nmtural vibration modes, [¢k] be the
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matrix containing the kept natural modes in its columns, and {pk}

be the vector of generalized coordinates associated with the

natural modes. [Q_] and {p_ are as before. It should be noted

that the generated boundary flexibility vectors, contained in

[Q_], are orthogonal to each other and they are orthogonalized

with all the natural modes contained in [@k], with respect to the

mass matrix [mtl. [Q_]' [@il and [@k] are used to transform the

coordinates from the physical coordinate system to the reduced

mixed physical and generalized one. The transformation is as

follows:

{u}[ ]{}u , c [I ] [Oc] e [0] k uc

= [T ] p_ cc= pe

u [_c ] [Oe] [+ ]
Pk k Pk

(3. tg)

/

where IT ] = transformation matrix of order (n) x (c+_+k)

The property matrices of equation (3.2] are transformed, giving

the following reduced mass [_] and stiffness [_] matrices.

where

I I

[_] = [T ]T [m] [T ] =

t"o!_"h C"c_

E_kl("h c_'d
(3.15}

("_!--("off: (®j_Cm,1C®,_
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= [I]_ = identity matrix of order

= [Ik_ = identity matrix of order k

in] = [T'] T [k] iT'] = [n_] [n]_ [n_ c3.16)

wherec_o_= Cko!+ Ckotc+! : cko_- Ekolokt-' ck_

c_ = E_ =_o_

CfZ]p/ = [Ql]T [kLl [ql]

[n_,_ : [nt/t : [_k] t [k,t [q_]

[nk_ = [_k]"[kll[®k] = diagonal matrix, having the

squares of natural frequencies in its diagonal.

The rest of the procedure is similar to what was explained in the

previous section.

3.3) Free-Interface Boundary Flexibility Vector Method of CMS:

Two formulations are presented; formulation based only on

free-interface boundary flexibility vectors and a hybrid
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free-interface boundary flexibility vector/conventional CMS

formulation.

3.3.1) Boundary Flexibility Vector Formulation:

Analogous to conventional method of free-interface CMS, two

cases have to be considered separately; systems in which

components have rigid-body modes and systems in which components

have no rigid-body modes.

3.3.1.1) Components Having No Rigid-Body Modes:

The equation of motion for an undamped free-interface

component in physical coordinates is

aa aw + aa

[0 ] [m ] _ [k ]
Wa Ww W_

[k] u 0
WW

where

C3.17)

{u } = subset of total displacement vector {u} for which
a

internal or external forces are applied.

{u } = complement of {u } in {u}.
W a

{f } = vector of external and internal forces acting on

component.

Without a loss of generality, the case of free vibration of a

component will be considered. The method that will be presented

in this section can also be applied to the case of components

having external loads, as will be explained in another section.

In the case of free vibration, there are only internal forces

acting at the interfaces between components. Thus {u } is equal
a

to {u } and equation (3.18) will be
C
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(3.18)

where {f } = subvector of internal forces acting on the
C

Interfaces of component.

The static response of the component to any individual force (or

moment) in {f } acting at one of the degrees of freedom of the
C

Interface {u }, Is a multiple of its response to a unit force (or
C

moment) applied at this degree of freedom. According to the

previous chapter, the static responses of the free-interface

component to a set of Imit forces (or moments) applied

individually and successively on every D.O.F. in {u }, were
C

defined as the attachment modes [_ ].
a

The number of attachment

modes in the component are equal to the number of the degrees of

freedom in {u }, where the unit forces are applied. Hence the
C

dimension of [0 ] is (n x c) and it contains all the attachment
a

modes {¢]} in its columns, where j = I, 2 ...... c. The static
a

response of the component to the vector {f } is a linear
C

combination of the attachment modes in [@ ]. According to the

definition of attachment modes, they are the columns of the

flexibility matrix ( [g] = [k] "I) corresponding to the D.O.F. in

{u } (or {u } in case of free vibration). Hence
a c

['°.'I][0]= =

" [®,,]lcJ [gl ]
(3.19)
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The free-interface boundary flexibility Ritz vectors are

derived from the force vector {f }. They are obtained from the
C

displacement shapes of the static responses of the component to

the forces (or moments) in {f }. The jth starting boundary
C

flexibility vector, {qll is obtained from the inertial loading of

the static response {¢J}, as follows:
a

[k] {qll = [m] {¢.,1}. (3.20)

Note that the jth starting vector is not taken as {¢J}, which is
a

the static response to the applied unit load at interface D.O.F.

number j. This approach is different than Wilson's method, where

the starting vector is taken as the static response to the

external applied load. This approach is also different than that

presented in fixed-interface boundary flexibility method of CMS,

where the starting vector was taken as the static response to the

load derived in equation (3.9). The reasons for this approach

will be clarified in a subsequent section of the thesis.

After obtaining the jth starting vector, subsequent vectors

are also obtained in a somewhat different procedure than that of

the fixed-interface algorithm. The difference is that all the

normalizations and orthogonalizations of vectors are performed

with respect to the stiffness matrix instead of the mass matrix.

The reason for this difference will also be clarified in a

subsequent section of the thesis. It should be noted that any

obtained vector in the jth set is orthogonalized with respect to

the stiffness matrix, with all previous vectors obtained in sets I
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through j.

In a paper presented by Hintz [17], it was pointed out that

in order to obtain a good representation of components in

free-interface CMS, an accurate determination of displacements at

D.O.F. in {u } (or {u } in free vibration), where forces are
a c

applied, is required. In other words, the static displacement

response of the component to interface forces must be the same for

both the CMS model and an acceptable finite-element model of the

component. In this case, the static representation of the

interface D.O.F. is said to be complete, in the new system of

generalized coordinates. In order to obtain the same displacement

response, for both the CMS and finite-element models, the

representation of the columns of the flexibility matrix

corresponding to the D.O.F. in {u } must be complete for the CMS
&

model. If the complete set of free-lnterface normal modes is used

as displacement shapes for the component, then the representation

of the flexibility of interface D.O.F., is by definition,

complete. Since a truncated set of the free-interface normal

modes is generally used in conventional CMS, the flexibility of

the component is generally less than that of the corresponding

finite-element model. That is, the contribution of the truncated

set of free-interface normal modes to the flexibility matrix is

incomplete, and the free-interface normal modes need to be

supplemented with static displacement shapes. The static

displacement shapes used in conventional CMS are the residual
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flexibility modes [$d], defined before In chapter two (see

references [2], [S], [6], and [17]). The residual flexibility

modes [$d] were introduced by MacNeal [S] to replace attachment

modes [_ ], as static displacement shapes for components. The
a

reason for introducing the residual flexibility modes is that by

using attachment modes [@ ] to supplement the truncated set of
a

free-interface normal modes, the obtained flexibility

representation of the interface D.O.F. in the CMS model is greater

than that of the finite-element model. The more flexible

representation is attributed to the complete flexibility

representation of the interface D.O.F., provided by using the

attachment modes as the only displacement shapes for components.

This fact explains why the static responses to the interface

forces [which are the attachment modes), were not used as the

starting boundary flexibility Ritz vectors. In the event they

were utilized as starting vectors, the obtained interface

flexibility of a component would actually be greater than that of

the corresponding finite-element model.

In the free-interface boundary flexlbility method of CMS, the

contribution of the obtained boundary flexibility vectors to the

interface flexibility is also incomplete. To obtain a complete

flexibility, the contribution of the free-interface boundary

flexibility vectors to the flexibility matrix must be determined.

Assume the number of the obtained boundary flexibility vectors is

6. Let [Q_] be the matrix containing the I boundary flexibility
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vectors In Its columns and let {p£} be the vector of generalized

coordinates associated wlth the free-lnterface boundary

flexibility vectors. The slzes of [Q_] and {p_} are (n x _) and

Consider the statlc equilibrium equatlon of the(_) respectively.

component

where [k]

{u}

[of:}

tk,uifo}
0 i

= total stlffness mztrlx of component.

= total displacement vector.

(3.21)

= force vector containing only forces at

interface degrees of freedom.

The boundary flexibility vectors [Qg] are used to transform the

physical coordinates {u} to the reduced set of generalized

coordinates {p_, according to the following

{u} = [Q_] {p_} (3.22)

Substltuting equation (3.22) in equation (3.21) and

pre-multiplying by [Q_]T, then

From which

[Q_]T [k] [Q_] {PJ = [Q_]T [ fc }
0 i

-1

fc

[Q(]I' {01 }
{p_} = [ [Q_]T [k] [Qg] ]

Substituting equation (3.24) in equation (3.22)

(3.23)

(3.24)
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{u} = [Q_] [ [Q£]T [k] [Q_] ]

-1

fc

[Q_]T f01 }
(3.25)

is equal to

{f°}(u} = [gk] (3.26)
01

where [gk] = flexibility matrix of component represented by

boundary flexibility vectors.

Hence by comparing equation (3.25) to equation (3.26), the

contribution of the free-interface boundary flexibility vectors to

the flexibility matrix is

-I

(gk] : (Q_] [ (Q_]"ck] [Q_] ] c%]_ (3.27_

For free-inter'ace boundary flexibility vectors which are

orthogonalized a_nd normalized with respect to the stiffness

matrix, [gk] becomes

= [Q_] [Q_]T (3.28)[gk]

This relationship explains why the generated boundary flexibility

vectors were orthogonalized and normalized with respect to the

stiffness matrix [k] instead of the mass matrix [m]. Notice that

the indicated inversion of the matrix in equation (3.27) is

avoided by the orthogonalization and normalization with respect to

the [k] matrix. The unrepresented flexibility, or residual
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flexibility [ga], analogous to that of conventional free-interface

CMS,is given by

[gd] = [g] - [gk] (3.29)

where [g] = full flexibility matrix = [k] -I

[gk] is given by equation (3.28)

The residual flexibility matrix [gd ] is used to obtain the

residual attachment modes (residual flexibility modes) [#d], by

applying unit forces or moments at D.O.F. in {u } (or {u } in free
a c

vibration). Hence,

Ec.dJoc][cc ]E doc][_,d] : : [gd] :
[_'d ] lc [°l] [gd ] i_

(3.30)

where [I] = identity matrix of order c.
cc

= matrix of unit forces or moments applied at

D.O.F. in {u }.
C

Notice that the residual attachment modes [_] are the columns of

the residual flexibility matrix [gd], corresponding to the degrees

of freedom in {u }.
c

The boundary flexibility vectors [Q_] and the residual

attachment modes [_], will be used to transform the equation of

motion from the physical system of coordinates to the reduced

generalized one. [Q_] and [$d] will provide the complete

flexibility for the D.O.F. in {u } (or {u } in free vibration),
a c

where forces are applied on the component. Let {pd} and {p_} be

the generalized coordinates associated with [_] and [Q_]
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respect ively.

respect ively.

-- [TI] = =c
ui P_ [@d ]tc

The sizes of {pd} and {p_} are c and

The transformation of coordinates is given by

[Qc ] Pd }
(3.31)

let

= vector of all generalized coordinates = _ Pe

#- %

{p j}
L ]

{pc} = any subset of {pj} having a size of c.

{Pro} = complement of {pc } In {pj}.

Accordingly, the transformation matrix iT1] in equation (3.31), is

partitioned and rewritten as follows

= [T 11 = ¢¢ (3.32)

u i P= [T1]t¢ [T111= P=

where iT t] = transformation matrix of order (n) x (c+().

iT1] can be used to transform the property matrices of component.

However coupling of components, whose interface displacements are

expressed by a set of generalized coordinates and mode shapes, is

not straightforward as in fixed-interface boundary flexibility

method of CMS. To overcome this problem, the displacements of the

interface D.O.F. are back transformed to physical D.O.F. (see

Abdallah [2]), in order to allow for a direct stiffness assembly

process. Assume the total number of generalized coordinates is j,

and if c is the number of interface D.O.F., and m = j - c, then
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Fromthe first matrix equation in (3.32)

} = [T1]-: {u } - [Tt]-:{Pc cc c cc [T1]c: {p.}

And from the second matrix equation in (3.32)

(3.33)

{u i} : (Tt]ic {pc} + [Tt]i= {p} (3.34)

Substitute equation (3.33) in equation (3.34), then

cc _ ]-t [TI] ) {p=}{ui} = [T,]l¢ [TI]-I{u¢} + ( (T1]i= [Tt]Ic (TI cc

(3.35)

By using equation (3.35), the transformation of coordinates in its

final form is as follows

{uo}{uo}[i= [T2] = _=
ul P= [¢I]

(3.36)

where [T2] = transformation matrix of size (n) x (j)

"] = IT [Tt]-t[#lc 1]to _

t

Notice that the form of equation (3.36) is similar to that of

equation (3. II), for fixed-interface components. The property

matrices are transformed to the reduced coordinate system by using

the transformation matrix [T2] , of equation (3.36). As the

interface D.O.F. are defined with respect to the physical

coordinate system, then the assembly of system property matrices

is straightforward and similar to that performed for

fixed-interface components, in the previous section.
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3.3.1.2) Components Having Rigid-Body Modes:

The main complication of components having rigid-body modes

is that the stiffness matrix is singular; thus the flexibility

matrix cannot be directly obtained. This problem was investigated

by Rubin [6] in conventional CMS. He introduced an alternative

method for obtaining the residual attachment modes. To overcome

the singularity of the component stiffness matrix, he used inertia

relief loading (see references [2],

detailed explanation of the method).

Rubin [6] are stated briefly here.

[4], [6] and [7] for a

The results obtained by

Assume the number of rigid-body modes is r. Let [# ] be the
r

matrix containing the r rigid-body modes in its columns. The

rigid-body modes are normalized with respect to the mass matrix.

Let {u} be the vector of all physical D.O.F. in component and let

{u } be a subset of {u} where forces are to be applied to obtain
a

attachment modes. In Rubin's method, the component is constrained

and prevented from rigid-body motion by applying r constraints to

a set {u } of D.O.F., such that {u } is exclusive of {u }.
r r a

The

sizes of {u}, {u } and {u } are n, a and r respectively. Let {u }
a r w

be the complement of {u } and {u } in {u}, having a size of w.

Define a special flexibility matrix [g ] relative to {u } for the
C

constrained component.
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[g] =
C (g] (oj[g.l [g ] [o ]

WW Wr

[o ] [o ] [o ]

(3.37)

Define a square projection matrix [A] as follows

[A] = [I ] - [m] [0 ] [} ]_
nn P r

where [I ] = Identity matrix of order n.
nn

Rubin showed that the elastic flexibility matrix [g ] is given by
e

[g ] = [A] T [g ] [A] (3.38)
0 C

The flexibility matrix [g ] is used to obtain inertia relief
0

attachment modes [@ ], by applying unit forces at {u } (or {u } in
a a c

case of free vibration). Inertia relief attachment modes are the

columns of the flexibility matrix [g ] corresponding to the
0

degrees of freedom in {u }.
a

Similar to components having no rigid-body modes, where

attachment modes [@ ] were used to generate the boundary
a

flexlblllty vectors, the inertia relief attachment modes [$ ] are
a

used here to generate the starting vectors. The jth boundary

Q

flexibility starting vector {q,}] is obtained from

{q[}J = [ge] [m] {¢]}a C3.39)

where {@ja} = jth inertia relief attachment mode.

[ge] = flexibility matrix given by equation (3.38}.

The subsequent boundary flexibility vectors are normalized and

orthogonalized with respect to the stiffness matrix, with all
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preceding vectors, as in the previous section. The contribution

of the boundary flexibility vectors to the flexibility matrix is

as before and given by equation (3.28). Hence the residual

flexibility matrix [gd ] is obtained from

[gd] = [ge] - CQ_] [Q_]t (3.40)

The residual flexibility matrix [gd] is used to obtain residual

inertia relief attachment modes [9 ], by applying unit forces at
S

{u } (or {u } in case of free vibration). The residual inertia
a c

relief attachment modes are the columns of the residual

flexibility matrix [gd], corresponding to the D.O.F. in {Ua}.

[¢ ], [Q£] and [9 ] are used to transform the physical coordinates

system to a generalized one as follows:

{u.}U w ----

U r

(%_] eta

Wg wr

rs rr

I:!l(3.41)
where {p }

s

{p_}

{p}
r

The size of the

= generalized coordinates of [9 ], of size a.
s

= generalized coordinates of [Q_], of size _.

= generalized coordinates of [@ ], of size r.

transformation matrix of equation (3.41) is

(n) x (a + l + r). The transformation of property matrices and

the assembly of the system property matrices will be similar to

what was presented in the previous section.
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3.3.2) Hybrid Boundary Flexibility Vector/ Conventional CMS

Formulation:

In this case a truncated set of free-interface normal modes

[#k] is used to supplement the free-interface boundary flexibility

vectors, as displacement shapes for components. Let {pk } be the

vector of generalized coordinates associated with [@k]. The sizes

of {pk} and [@k] are (k) and (n x k) respectively. The following

steps are general regardless the component has rigid-body motion

or not.

i- Normalize all the free-interface natural modes [@k] with

respect to the component stiffness matrix [k]. ( optional step).

2- Generate the free-lnterface boundary flexibility vectors [Q_]

from the starting vectors of equation (3.20), in case of

components having no rigid-body modes, or equation (3.39), for

components having rigid-body modes. It should be noted that

every generated vector is orthogonalized with respect to the

stiffness matrix [k], with all natural modes contained in [@k]

and with all previously generated boundary flexibility vectors.

Every generated vector is normalized with respect to the

stiffness matrix. Let _ be the number of the generated

boundary flexibility vectors and let {p_ be the vector of

generalized coordinates associated with them.

3- Form a matrix [V] containing the normal modes of vibration [@ ]
k

and the generated boundary flexibility vectors [Qg], in its

columns. The size of IV] is (n) x (k + 6). Hence,
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iV] = [ [@k] [Q_] ] (3.42)

Accordingly the vector of total generalized coordinates, {p }, is
V

formed as follows

{PrY = (3.43)

PZ

The contribution of the iV] matrix to the flexibility matrix [gk ]

iS

[8k ] = [V] iV] T (3.44)

Or in case the natural modes of vibration [_k ] are not normalized

with respect to the [k] matrix (step 1 above), [gk] iS given by

(see equation (3.27))

[ ]1 [c^k [gk]= iv] iv]_ [k] iV] [V]_= iV]

[0_

(3.45)

where [hk_ = a diagonal square matrix of order k. It

contains the eigenvalues, corresponding to

natural modes [@k ], in its diagonal.

[I]_ = identity matrix of order _.

Although equation (3.4H) involves an inversion of a matrix, it can

be used because the matrix is diagonal and its inverse can be

obtained readily.

The subsequent steps, whether for components with or without

rigid-body modes, are similar to that explained in the previous

section, except that every [Q_] is replaced by IV] and every {p_}
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is replaced by {p }, in the equations.
v

3.4) Computational Effort for Boundary Flexibility Vectors vs

Normal Modes of Vibration:

In this section, the number of operations required to

generate (1) boundary flexibility vectors versus (k) normal modes

of vibration, is estimated. In the numerical problems of chapters

four and five, the method used for obtaining the eigenvalues is

the determinant search method (see Bathe [18]) with bisection

iteration. While the method used to extract the mode shapes

(eigenvectors) is the inverse iteration method (see Bathe [18]).

The number of required operations is estimated by using some basic

criteria from reference [19]. The detailed calculations are

listed in appendix A, while in this section only the final results

are presented here.

It was found that the number of operations required to obtain

[k) eigenpairs, for a component, is as follows:

Total number of multiplications and divisions =

T (4n3-n) + _ -8- (2n3+Sn2-Sn) + x (2n2+4n +11 [3.461
I=I I

Total number of additions and subtractions =

k
-_-- (8n3-9n2+n) + k[ i ]_ (n3+3n2-n) + x (2n2+n - 3)

1=1 1

(3.47)

where n = total number of physical D.O.F. in component.

x! = number of inverse iterations required to obtain

eiEenvector i.
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Yl = number of iterations, in determinant search

method, required to obtain elgenvalue i.

While for the generation of ( boundary flexibility vectors per

component, the number of operations is as follows:

Total number of multiplications and divisions =

4 n3 _2 + 5_ 2 312 + 31 -I
( _ ) + ( 2 ) n + ( 3 ) n (3.48)

Total number of additions and subtractions =

4 _2+ 5_ -3

( _ ) n3+ ( 2 ) n2+ (
3_2-1SI +I _2

6 ) n - ( --_ ) (3.49)

It can be seen from equations (3.46) through (3.49), that the

number of operations is proportional to ns. Thus in case of

components having a large number of D.O.F., the number of

operations will be governed by the n3 terms in the above

equations. By using only the highest order cubic terms in the

above expressions, approximate values for the number of operations

can be obtained as follows:

- For the generation of k elgenpalrs:

Approximate number of multiplications and divisions =

- k 3
( 4 + y ) ( -_- ) n (3.50)

where y = average number of iterations in determinant search

method.
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The approximate number of additions and subtractions is found to

be the same as in equation (3.50).

- For the generation of _ boundary flexibility vectors:

Approximate number of multiplications and divisions =

4 3
( _ ) n (3._I)

Also the approximate number of additions and subtractions is the

same as in equation (3.51).

It is worth noting that the number of generated boundary

flexibility vectors , _, does not appear in equation (3.51).

Hence, once the stiffness matrix is inverted to obtain the

starting vector, the subsequent vectors are generated almost

without any computational cost.

The ratio of the number of operations to extract k eigenpairs /

number of operations to generate _ boundary flexibility (B.F.)

vectors can be approximated by:

Approximate # of operations for extraction of k eigenpairs

Approximate # of operations for generation of _ B.F. vectors

Y ) k C3.$2)( 1+ ---_--

The approximated ratio of equation (3.52) is dependent only on k

and y and it can be seen that it is always greater than unity.

Hence the number of operations required to extract k eigenpairs is

always greater than the number required to generate _ boundary

flexibility vectors. Furthermore, for more complex components,
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where one would require a substantial number of normal modes (k)

for a realistic characterization, the ratio given in equation

(3. S2) will be relatively high.

3. S) Summary:

A new method of CMS namely, the boundary flexibility vector

method of CMS, was presented in this chapter. The displacement

modes used in the method, represent a new type of vector, named

boundary flexibility Ritz vectors. Those vectors are generated

from internal forces derived from the flexibility (or stiffness)

properties of the interface de&q'ees of freedom of components. It

should be pointed out that the presented method avoids the

solution of a costly component eIgenvalue problem, which is

required in conventional methods of CMS, to obtain the natural

vibration modes of the components.

A comparison of the number of operations required to obtain

natural modes of vibration versus the boundary flexibility Ritz

vectors was made. The comparison indicated that a substantial

reduction of the number of required operations was obtained by

using the boundary flexibility vectors instead of natural modes in

CMS.

It should be noted that, in all of the methods of fixed or

free-interface boundary flexibility method of CMS outlined above,

for the case where there are external loads acting at internal

D.O.F. {ul} of components, those forces are used to obtain

load-dependent Ritz vectors (as in Wilson's algorithm presented in
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chapter (2)). For this case, the formulation of the boundary

flexibility method of CMS will be presented in chapter five.



Chapter (4)

Results of Numerical PPoblem_

in Free Vibration

4. I) Introduction:

This chapter presents three sample problems of free vibration

solved numerically by the boundary flexibility Ritz vector method

of CMS (B.F. Ritz CMS). The problems are also solved by

conventional CMS and flnlte-element methods. The results obtained

by the boundary flexibility method of _ are compared to the

other methods. Also a comparison of the saving in CPU time,

obtained by using the boundary flexibility vectors instead of

eigenvectors, is presented in this chapter. The first two

problems are composed of small components, having a few number of

physical D.O.F. While the third problem is substantially larger,

and demonstrates very well the saving in CPU time obtained by

using the boundary flexibility method of CMS.

4.2) Sample Problem One:

Sample problem one consists of a beam fixed at both ends and

supported at mld-span by a spring, dlscretlzed as shown in Figure

(4.1) (all units are ibs and inches). The properties of the beam

are given in the figure. Each node has two D.O.F.; vertical

displacement and flexural rotation.

The elgen-problem for this problem was solved for eleven

different values of spring stiffness k, ranging from O. 0 to

SO000.O Ib/in. For each value of k, five mode shapes and natural

48
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frequencies were obtained by solving the problem by nine different

methods. The first solution for the problem was obtained from a

flnite-element model of the system. The problem was then solved

using CMS by dividing the system into two identical components.

One component was the beam from node I to node 9 and the other

from node 9 to node 17. The constraint and attachment modes, of

component number one, used to generate the boundary flexibility

Ritz vectors are shown in Figures (4.2) and (4.3) respectively.

The various fixed-interface and

utilized in solving the problem,

sections.

free-interface CMS methods,

are listed in the following

4.2. I) Solution by Fixed-interface Methods of CMS:

Four methods were used to solve the problem:

Method I- Conventional CMS, using two fixed-interface normal modes

and two constraint modes, for each component.

Method 2- Boundary flexibility CMS, using two fixed-interface

boundary flexibility Ritz vectors and two constraint

modes, for each component.

Method 3- Boundary flexibility CMS, using three fixed-interface

boundary flexibility Ritz vectors and two constraint

modes, for each component.

Method 4- Mixed conventional and boundary flexibility CMS, using

one flxed-interface normal mode, one fixed-interface

boundary flexibility Ritz vector and two constraint

modes, for each component.
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For all methods, the values of the obtained results for

natural frequencies were compared to that obtained by the

finite-element method. The percentage of error was computedfor

all the obtained frequencies, over the given range of spring

stiffness. The computed percentage errors, for all methods of

solution, for the first two natural frequencies were less than

0.06 Z and these results are not listed. For the third, forth and

fifth natural frequencies, the comparative results are shown in

Figures (4.4), (4.5) and (4.6), respectively. As indicated from

the figures, by increasing the spring stiffness, the % errors are

generally increasing, except for modeshapes having a node at the

spring location. It can be seen from the figures, that the

results obtained by conventional CMS are better than those

obtained by boundary flexibility CMSwith two boundary flexibility

Ritz vectors per component. It should be noted, however, that the

third natural frequency computed by using boundary flexibility

CMS, with two boundary flexibility Ritz vectors per component, are

quite reasonable for engineering purposes. Moreover, a

substantial saving in CPU time was attained by using two boundary

flexibility Ritz vectors rather than two normal modes, for each

component, as will be discussed in the next section. A

substantial reduction in CPU time can even be obtained when using

three boundary flexibility Ritz vectors per component, compared to

two normal modes (as will be seen in the next section). The

results obtained by the mixed conventional/ boundary flexibility
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CMSwere generally in between those obtained by conventional and

boundary flexibility methods of CMS, with two boundary flexibility

vectors per component. For certain values of spring stiffness,

however, they were inferior to the boundary flexibility method

(for the third and forth natural frequencies) and superior to

conventional CMS (for the fifth natural frequency). The results

obtained by boundary flexibility CMS, with three boundary

flexibility Ritz vectors per component, were in better agreement

with the finite-element method solution than those obtained by

conventional CMS.

4.2.2) Solution by Free-Interface Methods of CMS:

Four" methods were used to solve the problem:

Method I- conventional free-interface CMS, using two

free-interface normal modes and two residual attachment

modes per component.

Method 2- Free-interface boundary flexibility CMS, using two

free-interface boundary flexibility Ritz vectors s_nd two

residual attachment modes per component.

Method 3- Free-interface boundary flexibility CMS, using three

free-interface boundary flexibility Ritz vectors and two

residual attachment modes per component.

Method 4-Mixed conventional and boundary flexibility CMS, using

one free-interface normal mode, one free-interface

boundary flexibility Ritz vector and two residual

attachment modes per component.
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As before, the percentage errors of the first two natural

frequencies, obtained by all four methods, are very small (less

than O.07S _. ) and are not listed. The comparative results for

the third, forth and fifth natural frequencies are shown in

Figures (4.7), (4.8) , and (4.9) respectively. Comparing the

results to that obtained by fixed-interface components, it can be

seen that for conventional and mixed methods of CMS, the results

obtained by using fixed-interface components were generally better

than that obtained by using free-interface components. While for

the boundary flexibility method of CMS (whether two or three

boundary flexibility vectors are used per component), the results

were nearly the same for both fixed and free-interface components.

It can be seen from Figures (4.7), (4.8) and (4.9) that the

results obtained by conventional free-interface CMS were better

than those obtained by the boundary flexibility method, with two

boundary flexibility vectors per component. However, they were

comparable and the difference was not as large as in

fixed-interface methods. The results obtained by the mixed

conventional/ boundary flexibility model were always in between

those obtained by conventional and boundary flexibility (with two

vectors per component) methods of CMS. The results obtained by

the boundary flexibility CMS, with three boundary flexibility Ritz

vectors per component, were in the best agreement with the

finite-element method solution, and they were nearly equal. It

can be seen from Figure (4.9) that the conventional CMS, boundary
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flexibility CMS (with two vectors per component), and mixed

methods gave unreasonable values for the fifth natural frequency.

CPU time was compared for the extraction of normal modes of

vibration versus the generation of the boundary flexibility

vectors, for the free-interface solutions. For each component, it

was found that a saving of 47 X of CPU time was achieved in

generating two free-interface boundary flexibility vectors rather

than two free-interface normal modes. Moreover a saving of 31

of CPU time was achieved, for the case of generating three

boundary flexibility vectors versus two normal modes. It should

be noted that the most costly operation in generating the boundary

flexibility vectors is the inversion of the full stiffness matrix

[k], in case of free-interface components {see equation (3.20)),

or the stiffness matrix [k,l of internal D.O.F., in case of

fixed-interface components [see equation (3. I0)). This inversion

of the stiffness matrix, is also required in conventional

free-interface CMS (see equations (3.29) and (3.30)) for the

generation of residual attachment modes, or in conventional

fixed-interface CMS (see equation (3. S)] for the generation of

constraint modes. As this fact was not taken into consideration

in computing the saving in CPU time, the above results regarding

the saving in CPU time can be considered conservative.

4.3) Sample Problem Two:

This problem is used to illustrate the solution of free

vibration problems by free-interfa_:e boundary flexibility vector
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method o£ CMS, for components having rigid-body modes. The

problem is similar to problem one with the support at node one

being hinged instead of being fixed (see Figure (4.10)). Hence

component number one has one rigld-body mode, which is the

rotation of the whole component about the hinged node. For a

fixed spring stiffness, the problem is solved by four methods.

The first method o£ solution is by the finite-element method,

while the other three solutions are obtained by CMS. The three

methods of CMSused, are as follows:

Method I- Conventional free-interface CMS, using one rigid-body

mode, one free-interface normal mode and two residual

inertia relief attachment modesfor the first component.

Two free-interface normal modes and two residual

attachment modeswere used for the second component.

Method 2- Boundary flexibility CMS, using one rigid-body mode, one

free-interface boundary flexibility Ritz vector and two

residual inertia relief attachment modes, for the first

component. Two free-interface boundary flexibility Ritz

vectors and two residual mttachment modes were used for

the second component.

Method 3- Boundary flexibility CHS as in method 2 above, but the

number of free-interface boundary flexibility vectors,

in the two components, is increased by one.

Five natural frequencies were obtained for each method. The

% discrepancy o£ all the obtained natural frequencies, compared to
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the finite-element solution, were computed for all the three

methods (see table (4.1)). For conventional CMS (method I), the

results were slightly better than those obtained by boundary

flexiblllty CMS (method 2). Both of the two methods gave

unreasonable values for the flfth natural frequency. The results

obtained for all five natural frequencies by boundary flexibility

CMS (method 3) were In the best agreement wlth the flnite-element

method solution.

4.4) Sample Problem Three:

This sample problem is used to verify the accuracy of the

results obtained by the boundary flexibility method of CMS, in

case of components having a large number of D.O.F. The problem is

also used to compute the saving in CPU time obtained by using

boundary flexiblllty CMS instead of conventional methods.

The problem consists of a three dimensional three storey

frame, as shown in Figure (4.11), fixed to the ground at four

columns. The properties of the beams and columns are given in

Figure (4.11). Also glven is the flnlte-element model for the

frame. The total number of physlcal D.O.F. for this frame is 648,

corresponding to 6 D.O.F. per node. The problem was first solved

by the flnlte-element model obtaining the first twelve natural

frequencies. It was then solved by the boundary flexibility and

conventional methods of CMS. The structure was divided into four

components by two vertical planes; the first plane passlng through

nodes 29, 90, 91, 82, 83 and 84 and the second plane passing
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through nodes 26, 27, 28, 85, 86 and 87. Component number one is

shown in Figure (4.12). Fixed-interface components were used for

the two CMS methods. For each component, 36 constraint modes were

used, corresponding to six D.O.F. per node at the interfaces. For

the boundary flexibility method of CMS, three boundary flexibility

vectors were generated, for each component. The same number of

eigenvectors were used in conventional CMS, for each component.

Hence the total number of D.O.F. for the whole frame in CMS

methods was reduced to 84, compared to 648 D.O.F. in the

finite-element model. The results obtained for the first twelve

natural frequencies, by the boundary flexibility and conventional

methods of CMS were compared to that obtained by the

finite-element method, and the results were presented in Table

(4.2). From Table (4.2), it is clear that the results obtained by

both methods of CMS, for the twelve natural frequencies, are in a

very good agreement to that obtained by the finite-element method.

The percentage saving in CPU time obtained by using the

boundary flexibility vectors instead of eigenvectors, was computed

for each component. Figure (4.13) shows the percentage saving in

CPU time, in the case where equal numbers of boundary flexibility

vectors and eigenvectors were generated, up to eight boundary

flexibility vectors or eigenvectors per component. Two curves are

shown in Figure (4.13). The lower curve of Figure (4.13) is the

saving computed for the case where the CPU time required to invert

the stiffness matrix in the boundary flexibility method of CMS, is
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taken into consideration. The upper curve of Figure (4.13)

represents the saving when the CPU time required to invert the

stiffness matrix is not taken into consideration. The reason for

showing the upper curve is that the stiffness matrix inversion is

also required in conventional method of CF_3 to generate the

constraint modes. An average percentage savings in CPU time of

757. in the lower curve and 80_, in the upper curve are observed.

Figure (4.14) shows the percentage saving in CPU time obtained by

using up to five boundary flexibility vectors versus one

eigenvector. For the case where the CPU time required to invert

the stiffness matrix in the boundary flexibility method is

included, it can be seen from Figure (4.14) that 127, saving in CPU

time can be achieved, if four boundary flexibility vectors are

generated instead of one eigenvector. While for the case where

the time required to invert the stiffness matrix is not included,

a saving of 207. in CPU time can be achieved, even if five boundary

fiexibility vectors are generated instead of one eigenvector.
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Method

3

4.24369

0.0_878

4.2376._=

O.O2421

1.73801

0.03567

2.8_ !38

26.06SI

31.47S3

2.5425"7

Table (4.1) - % K-for of Natur-_l Frequencies For Sample _.-T_blemTwo
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Natural

Frequency

(tad/see)

Method

FEM B.F. CMS

_I 24.5962

_2 29.6600

30.2068

Conven.

CMS

24.6043

29.6670

30.2142

24.6025

29.6691

30.2163_3

_4 30.8600 30.8678 30.8698

wS 32.8940 32.9237 32.9275

_6 37.3674 37.3866 37.3686

_7 38.6329

39.3779_8

_9 44.9766

_10 52.0542

_11 64.4975

65.8761

38.6644 38.6339

39.4619 39.4766

45.0620 46.0627

62.1692 52.1414

64.9022 65.1329

66.2917_12 66.5366

Table (4.2) - Comparison of Natural Frequencies

for Sample Problem Three



Chapter (5)

Forced Vibration Response by The Boundary

Flexibility Vector Method of CMS

S.l) Introduction:

This chapter presents the formulation of the boundary

flexibility method of CMS, for the forced vibration problem. It

also presents a derivation indicating that the load-dependent Ritz

vectors, used by Wilson in his formulation for fixed-interface

CMS, yield a flexibility representation higher than the

corresponding finite-element model, for the internal D.O.F., where

external loads are applied to generate the vectors. It is further

shown in this chapter, how the load-dependent Ritz vectors can be

generated in a way such that the flexibility representation of

fixed-interface components is equal to the corresponding

finite-element model. Finally, a numerical example is solved by

several methods and for different loading conditions. The results

of the boundary flexibility method is compared to that obtained by

the other methods.

5.2) The Application of The Boundary Flexibility Method of CMS in

Forced Vibration Problems:

The boundary flexibility method of CMS, presented in chapter

three, can be applied to forced vibration problems. For

components having no external loads applied, the formulation will

be similar to that presented in chapter three, for fixed and

free-interface components. For components where external loads

74
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are applied, the following two cases are considered:

I) If the external load is applied at an interface D.O.F., the

formulation will be exactly the same as to what was presented in

chapter three, for fixed and free-interface components.

2) If the external load is applled at an internal D.O.F., then the

external load vector is transformed to the mixed physical and

generalized coordinate system as follows:

Consider the equation of motion for a fixed or free-interface

component:

[m] {_} + [c] {u} + [k] {u} = (S.13

fl

where {P } = subvector of interface internal forces between
C

component s.

{fl} = subvector of external loads applied at one or

more internal D.O.F.

[m], [k], [c], {u}, {u} and {u} are as before.

The equation of motion is transformed to the mixed physical and

generalized coordinate system as follows:

fl

where [T] = transformation matrix given by

equations (3.11), (3.14) or (3.38).

It should be noted that the internal force subvector, {P }, will
c

be unaffected by any of the transformations given by equations

(S.2)

either of
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(3.11), (3.14) or (3.36). While the external load subvector is

transformed from the physical coordinate system to a mixed

physical and generalized coordinate system.

For free-interface components, the method will be similar to

that outlined in chapter three, with every {u } vector replaced
c

by {u } sund every {u } vector replaced by {u } in all the
a | w'

equations , where {u } Is the vector of D.O.F. where external or
a

internal loads are applied and {u } is the complement of {u } in
w &

{u}. Thus the load-dependent vectors will be contained in the

residual attachment modes and the boundary flexibility vectors.

For fixed-interface components, the formulation has to be

modified in order to generate residual attachment modes from the

external applied loads. Assume that the external loads are

applied at a subvector {u } of Internal D.O.F. Then the total
a

displacement vector is partitioned Into

lucl{U} = = Ua

U!

U w

(S.3)

where {u } = subvector of internal D.O.F. where external loads
a

are applied.

{u } = complement of {u } in {u }.
w a i

In order to obtain good results for the set {u } where the
a

external loads are applied, the columns of the flexibility matrix

corresponding to {u }, in the CMS model, must be complete. In
a
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other words, the flexibility of the D.O.F. in {u } must be the
a

same in the CMS and FEM models. Similar to free-lnterface

components, the set of constraint modes [# ] and fixed-interface
c

boundary flexibility vectors [Q_] do not supply the full

flexibility for the D.O.F. in {u }.
a

Thus residual attachment

modes have to be added to obtain the desired full flexibility.

Hence, the contribution of the constraint modes [_ ] and the
C

fixed-interface boundary flexibility vectors [Q_] to the

flexibility matrix, must be obtained.

Let [T] be the matrix containing [@c ] and [Q_] in its columns

I j[tllco ,]= cc (5.4)

IT] = [_c] [Q_] [_t] [Q]t

The size of [T] is (n) x (c + 6). Where n is the total number of

physical D.O.F. in component, c is the number of interface D.O.F.

and _ is equal to the number of the fixed-interface boundary

flexibility vectors. Similar to equation (3.27), the contribution

of [T] to the flexibility matrix is given by:

-I

[gk] = [T] [ [T]T [k] [T] ] [T] T
(s.s)

where [gk] = contribution of [T] to the flexibility matrix.

Substitute equation (5.4) in equation (3.5) and note that

(®,!:- tkt-' tk! and tkot
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Let [g] be the total flexlb111ty matrix of the component. In

Appendix B, [g] is derived in terms of the stiffness submatrices

of the flxed-lnterface component. Thus,

[ [gc] [gct ] (5.9)[g] = [g,_] [g_t

]]

tgll= Ekll-I .,. c_t-_[_,_[t_ol-C_otE_t-'E_l]-'c_otc_t-,

Hence the unrepresented flexlbllity matrix, or the residual

flexibility matrix [gd ] iS given by:

[ga] = [g] - [gkl ; (5.10)

[0] [kl-,_ [Q_I[Q_]T

For fixed-lntex-face components, the set {u } is considered fixed.
C

Hence the residual flexibility matrix for the flxed-lnterface

component will be [gd]ll

[gd]ll = [kIl-1 - [Q_][Q_]T (5.11)

which is the full flexibility matrix for the fixed component,

minus the contribution of the flxed-lnterface boundary flexibility

vectors to the flexibility matrix. The residual flexibility
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matrix given by equation (S. ll), is used to obtain the residual

attachment modes [_] for the fixed component. This is achieved

by applying unit forces at the subvector {u } of the physical

D.O.F. Hence the residual attachment modes [@ ] are the columns
d

of the residual flexibility matrix [gd]ll , corresponding to the

D.O.F. in {u }. It should be noted that the final displaced
a

shapes formed by [_ ], [Q_] and [$ ] will provide the full
C d P

flexibility representation for the D.O.F. in {u } where the
a

external loads are applied. Thus the prediction of responses of

D.O.F. in {u } by using this formulation, is expected to be better
a

than a formulation which does not use the residual attachment

modes. If {p_} and {pd} are the generalized coordinates

associated with [Q_] and [%], the sizes of {p_} and {pd} are (_)

and (a) respectively, where (_) is the number of boundary

flexibility vectors in [Ql], and (a) is the number of D.O.F. in

{u } where the external loads are applied. The transformation of
a

coordinates for the fixed-interface component, for case of

external applied loads is given by:

= [T] p_ = cc

u i [_l] [Q_]
Pd

ifu}
[%] Pd

(S. 12)

where [T] = transformation matrix of order (n) x (c + _ + a).

The transformation matrix [T], is used to transform the property

matrices and the load subvector {fl}, as in equation (S.2), where
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fa

(s.13)

where {f } = subvector of external loads applied at internal
a

degrees of freedom {u }.
a

S.3) A Comment on Wllson's Load-Dependent Ritz Vectors:

As mentioned in chapter two, Wilson et al. [i5] applied the

load-dependent Ritz vectors to flxed-lnterface CMS. Only

constraint modes were used for components having no external loads

applied at internal D.O.F. For components having external loads

{fa } applied at a subset {ua } of the internal D.O.F. {ul} ,

load-dependent Ritz vectors were generated from those applied

loads. This section proves that the load-dependent Ritz vectors,

the subsequent vectors generated from them and the constraint

modes, wlll supply flexibility properties for the D.O.F. in {u },

greater than that of the corresponding finite-element model. Thus

higher displacement responses are obtained for the D.O.F. in {u },
a

by using this model.

Consider the same notation used in the previous section.

Starting only with constraint modes [@ ], as displacement shapes
C

for a component, we can proceed in a similar manner to that of the

previous section, to obtain the contribution of the constraint

modes to the total flexibility matrix. It was found to be equal

to (compare to equation (S.8)):
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= F [gk]_
[gk]

[ [gk]t(:
C5.143

[ _]-_where [gk]ee = [ke]-tkettktt'ttkt

[gk]tt [ 2]-__- [kt-_tk,2 tkol-tko/tk,t-'tk tko/tk_t-_

If [g] is the total flexibility given by equation (5.9), then the

residual flexibility matrix [gd] (or the unrepresented

flexibility), is given by

[[Oc_[ga] = [g] - [gk] = [0_ t°°t ]
[ktt -I

(5.15)

Which indicates that the constraint modes [@k] supply full

flexibility to the submatrices [gcc], [gtc] and [go!' and an

incomplete flexibility to the submatrix [gil" Wilson et al. [15]

used this [ktl-t matrix to generate the starting load-dependent

vector from the external applied load. Thus the starting vectors

will be the columns of the residual flexibility matrix, [gd] =

[kil-1, corresponding to the D.O.F. in (ua}, where the external

applied loads act. Any subsequent vectors are generated according

to Wllson's algorithm given in chapter two. It should be noted
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that the starting vectors, by themselves, will supply the full

flexibility representation for the D.O.F. in {u } and any
a

subsequent generated vectors will add to the flexlbllity of the

D.O.F. In {u }. Thus the resulting component will have an "excess
a

flexibility" for the D.O.F. in {u } and hence a higher response
a

prediction for the D.O.F. where the external loads are applied.

In order to obtain a component having a more realistic

representation of the flexibility, another approach is suggested.

This approach is similar to that taken in chapter three for

free-interface components, in the boundary flexibillty method of

CMS. Assume, for simplicity, that the external load is applied

only at D.O.F. number j from the set of degrees of freedom in

{ul}. The static deflected shape obtained by this load is by

definition equal to {¢J}, which is the attachment mode shape for
a

D.O.F. number j. The {¢]} vector is equal to the column of the
a

flexibility matrix, led ] = [kl1-1, corresponding to D.O.F. number

j. {¢J} is the starting load-dependent Ritz vector used by Wilson

et al. [IS]. In this formulation the starting vector will instead

be

Q

= [k] [5] {¢J2 Cs.16)

0

where {x I} = starting load-dependent Ritz vector.

It can be seen that {x[} is the Inertial loading of the static

response to the applied external load, and not the response

itself, as in Wllson's method. This is exactly similar to that
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presented for free-lnterface components, in the boundary

flexibility method of CMS (see section 3.3.1.1.). The subsequent

vectors are generated from the {x_} vector by using Wilson's

algorithm. It should be noted that orthogonallzatlons and

normalizations are carried out with respect to the stiffness

matrix [kll , instead of the mass matrix [mil.

residual flexibility matrix is obtained (as

section):

Thus a new simple

in the previous

[gd.] = [gd] - ix]ix]T

= [kll -I - iX]iX] T (S. 17)

where [gd.] = new residual flexibility matrix.

iX] = matrix containing the generated load-dependent

Ritz vectors in its columns.

This new residual flexibility matrix is used to generate residual

attachment modes [@d ], which will be, in this case, the columns of

the [gd,] matrix corresponding to D.O.F. number J. The final

transformation of coordinates, in its general form, is given by:

Uc = iT] p_ = cc

ui [_'l] iX]
Pd

where

luc1p
[ #d ] Pd

(5.18)

{p_} = generalized coordinates associated with (_)

generated load-dependent vectors in iX].

{pd} = generalized coordinates associated with (a)

residual atta_:hment modes [_Pd], corresponding to
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D.O.F. in {u } where external loads are applied.

[T] = transformation matrix of order (n) x (c + _ + a).

It should be noted that by this approach, we can ensure a full

flexibility representation for the D.O.F. in {u }. The reason for
a

this is that the contribution of the generated load-dependent Ritz

vectors to the flexibility matrix, was taken into consideration in

equation (5.17). The property matrices and the external load

vector are transformed, using the [T] matrix as before.

5.4) Sample Problem:

The structure used to illustrate the forced vibration

response by the boundary flexibility vector method of CMS, is the

one shown in Figure (4. ii), in the previous section. The external

loading function applied is a step function, shown in Figure

(5.1). The method used for integrating the equations of motions,

is the Newmark step by step inteETation scheme (see Bathe [18]),

with constants _ and 3 equal to 0.25 and 0.5 respectively. This

method is chosen because it is unconditionally stable for the

given values of _ and 3. The time step chosen for integration is

0.02 seconds, which is less than the first period of the structure

divided by ten. Proportional dampin E is used (see [18] and [18])

according to the following equation:

[C] = _ [M] + _ [K] (6.19)

Where [C], [M] and [K] are damping, mass and stiffness matrices

respectively, for the whole system. _t and _ are constants to be

determined from two given damping ratios corresponding to two
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unequal natural frequencles (see Appendix C). Two levels of

damping are used; a low level corresponding to _I = 0.002 and

_s = O.lS and a higher level corresponding to _I = 0.05 and

_e = O.IS. _i and _e are the damping rat los for natural

frequencies one and elght respectlvely. For the above two levels

of damping, the corresponding proportional constants are (_ =
I

-7.489 , _I = 0.0124) and (_=-3.584 , _2= 0.0099) respectively

(see Appendix C).

Three loading cases are considered, for each damping level.

They are as follows:

I) Load acting at node 31 in the global Z directlon. Node31 Is

an Interface D.O.F. in components one and two. This case is

solved by three methods; method one is by direct integration of

the equations of motlon, method two is by conventlonal CMSby

using constralnt modesand three flxed-lnterface normal modesper

component and method three is by the boundary flexibility method

of CMS by using constralnt modes and three flxed-lnterface

boundary flexibility Ritz vectors. For all methods, Z-direction

dlsplacement responses are obtalned at nodes 13, 31 and 112 (see

Figures (5.2), (5.3) and (5.4) for case of low damping, and

Figures (5.5), (5.6) and (5.7) for case of high damping). The

results obtained are almost the same for the three methods. For

all responses, the case of high damping converges to the static

solution after few cycles, while the case of low damping keeps

oscillating about the static response, and requires a larger
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number of response cycles in order to converge to it. For the two

damplng levels, the maximum and statlc responses, for each given

node, obtained by the three different methods are shown In Tables

(s.1) and (S.2).

2) Load acting at node 10 in the global Z-direction. This case Is

also solved by the above three methods. The Z-direction

displacement responses are calculated at nodes i0, 84 and 112 (see

Figures (S.8), (5.9) and (S. lO) for low damping case and Figures

(5. II), (S. 12) and (S. 13) for high damping case). Also the

results obtained are almost the same for all three methods. The

maximum and static responses obtained by each method, for both the

two damping levels, are presented in Tables (S.3) and (5.4).

3) Load acting at node 16 in the global Y-direction. This case is

solved by the above three methods and by another fourth method.

The fourth method is the boundary flexibility method of CMS, wlth

two boundary flexibility vectors, one residual attachment mode and

constralnt modes for component one where the load is applied, and

three boundary flexiblllty vectors and constraint modes for each

of the other three components. The Y-directlon displacement

responses are obtalned at nodes 16, 87 and 99 (see Figures (S. 14),

(S. IS) and (S. 16) for low damping case and Figures (S. 17), (S. 18)

and (5.19) for high damping case). Tables (S.S) and (5.6] show

the maximum and static responses obtained by all methods, for the

two damping levels. For nodes 87 and 99, the results obtained by

the four methods are almost the same, for the two levels of
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damping. For the response at node 16, the results are not the

same, as can be seen from Figure (5.14) and Table (5.5) for case

of low damping, and Figure (S. 17) and Table (5.6) for case of high

damping. The results obtained, for the two levels of damping, by

the conventional CMS method, indicates the maximum response is

about 11_. lower and the static response is about 14.S_. lower than

the direct integration results. Better results are obtained by

the boundary flexibility method of CMS, in which three boundary

flexibility vectors are used for each component. The results

obtained by the boundary flexibility method of CMS, by using one

residual attachment mode for component number one, are in the best

agreement with the results obtained by the direct integration

method.
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Load

1.0K

0.0
Time

Figure (S. I) - Load for SampleProblem.
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Figure (5.14) - Response at Node 16 in The Y-Directlon

for The Case of Load Acting at Node 16

in The Y-DirectIon {Low Damping)
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Figure (5.15} - Response at Node 87 In The Y-Direction

for The Case of Load Acting at Node 16

in The Y-Direction (Low Damping)
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109

Method

Responses
B.F. CMS

Z13 max.

Z13 static

Z31 max.

Z31 static

ZII 2 max.

Zl12static

Direct

Integration

0.19363

0.10763

0.45955

0.27631

0.06321

0.02718

Conven.

CMS

0.19382

0.10763

0.45959

0.27631

0.06320

0.02718

0.19356

0.10791

0.45967

0.27631

0.06320

0.02718

Table (5.1) - Maximum And Static

Load at Node 31 in

With Low Damping.

Responses for

Z-Direction
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Responses

Z13 max.

Z13 static

Z31 max.

Z31 static

ZII 2 max.

Z112static

Direct
Integration

0.18485

0.10699

0.44217

0.27638

0.05895

0.02670

Method

Conven.

CMS

0.18503

0.10699

0.44223

0.27538

0.05894

0.02670

B.F. CMS

0.18478

0.10699

0.44231

0.27538

0.05894

0.02670

Table (5.2) Maximum And Static Responses for

Load at Node 31 in Z-Direction

With High Damping
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Responses

Zlo max.

Zlo static

Z84 max.

Z84 static

Zll 2 max.

Zll2static

Direct

Integration

0.08345

0.05265

0.06310

0.02722

0.02667

0.00192

Method

Conven.

CMS

0.08313

0.05236

0.06310

0.02721

0.02663

0.00192

B.F. CMS

0.08313

0.05236

0.06309

0.02721

0.02663

0.00192

Table (5.3) Maximum And Static Responses for

Load at Node I0 in Z-Direction

With Low Damping.
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Responses

ZIO max.

ZIO static

Z84 max.

Z84 static!

ZII 2 max.

Zll2static

Direct

Integration

0.07661

0.05278

0.0590S

0.0271S

0.01931

0.00184

Method

Conven.

CMS

0.07625

0.05247

0.01928

0.00184

B.F. CMS

0.07624

0.05246

k

0.05905

0.02715

0.01928

0.00184

Table CS.4 ) - Maximum And Static Responses for

Load at Node 10 in Z-Direction

With High Damping.
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Method
Responses

Direct Conven. B.F. CMS B.F. CMSWith
Integ. CMS Resid. Mode

YI6 max.

YI6 static

Y87 max.

Y87 static

Y99 max.

Y99 static

0.08908

0.06522

-0.02239

-0.00353

-0.01219

-0.00193

0.07925

0.05583

-0.02239

-0.00353

-0.01212

-0.00193

0.08695

0.06287

-0.02251

-0.00353

-0.01231

!-0.00193

0.08781

0.06386

-0.02247

-0.00353

-0.01229

-0.00193

Table (5.5) - Maximum And Static Responses for

Load at Node 16 in Y-Direction

With Low Damping.
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Responses

YI6 max.

YI6 static

Y87 max.

Y87 static

Y99 max.

Y99 static

Direct

Integ.

0.08793

0.06555

-0.02161

-0.00351

-0.01048

-0.00194

Conven.

CMS

0.07812

0.05611

-0.02159

-0.00351

-0.01043

-0.00194

Method

B.F. Cl_

0.08578

0.06318

-0.02172

-0.00351

-0.01060

-0.00194

B.F. CMS With

Resid. Mode

0.08665

0.06417

-0.02168

-0.00351

-0.01058

-0.00194

Table C5.6 ) - Maximum And Static Responses For

Load at Node 16 in Y-Direction

With High Damping.



Chapter (6)

Sun_ary and Conclusions

A new method of component mode synthesis w_s presented in

this work. The new method, namely the boundary flexibility vector

of CMS, is based upon a set of static Ritz vectors (boundary

flexibility vectors) as generalized displacement shapes for

components. The generation of these vectors does not require the

solution of the eigenproblem associated with the component, as in

the case of conventional methods of CMS. The formulation of the

new method for the free vibration problem as well as the forced

vibration problem, was presented for both fixed and free-interface

components. A comparison of the number of operations required to

obtain the boundary flexibility vectors versus normal modes of

vibration, was presented. The comparison showed a substantial

reduction of the number of required operations by using the

boundary flexibility vectors, instead of eigenvectors in CMS.

Numerical examples for the free vibration problem were

presented in chapter four'. The examples were solved by the

boundary flexibility method of CMS and by other different methods.

Results indicated that by using the boundary flexibility method,

more accurate results could be obtained with a substantial saving

in CPU time. The new method was applied to a substantially lax-ge

structure, in chapter four'. The results obtained by the boundary

flexibility method of CMS, were in good agreement with

finite-element and conventional methods of CMS. The saving in CPU
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time gained by using the boundary flexibility vectors, instead of

eigenvectors, was computed for this problem. An average saving

of CPU time between 75Z and 80% could be attained, for generating

the same number of vectors.

A numerical example was presented for the forced vibration

problem. The results obtained by the boundary flexibility method

of CMS, were in good agreement with the results obtained from the

direct integration of the equations of motion. In all cases

considered, the results obtained by the boundary flexibility

method of C_L_ were almost the same and sometimes superior to those

obtained by conventional methods of CF_.

It was proved by this work, that the boundary flexibility

method of CF_ could be applied to free and forced vibration

problems. It was shown that accurate results could be obtained by

applying the method, with a substantial saving in CPU time

compared to conventional methods of CMS.

A general outline for continuation of this work may be the

following:

I- Develop a criteria to specify which of the constraint or

attachment modes, are to be chosen to generate the boundary

flexibility vectors. This criteria should give an indication of

how much a constraint or an attachment mode will contribute to the

response.

2- Investigate methods for refining the generated boundary

flexibility vectors. One idea suggested is to investigate the
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generation of the vectors from actual interface stiffness

properties between components, instead of assuming the interface

either fixed or free.
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Appendix A

Comparison of The Number of Operations For Generating

The Boundary Flexibility Vectors Versus Eigenvectors

The number of operations are derived using some basic

criteria in reference [19].

A.I) Extraction of k Eigenpairs:

For the deteminant search and inverse iteration methods, see

Bathe [18]

Assume: n = total number of degrees of freedom

k = number of required eigenpairs

Yl = number of iterations in determinant search method

required to obtain eigenvalue i

x I = number of inverse iterations required to obtain

eigenvector i

[K]= stiffness matrix

[M]= mass matrix

{Y }= eigenvector number i
i

= amount of shift applied to stiffness matrix

The followin E steps are required to obtain each eigenpair, thus

they are repeated k times.

Step

1

Operation

Apply shift

[K] = [K] - _ [M]

TrianEularize [K]

Total for step I

No. of Mult. or

Divisions

2
n

2n 3+ 3n 2- Sn

6

2n3+ 9n 2- 5n

6

No. of Add. or

Subtractions

2
n

3
n - n

3

n3+ 3n 2- n

3

120
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Step

2

Operation

Step 1 is repeated from

j = I ....Yl

Obtain [KI-I

Compute {X_+I: [KI-z{Yj}

Compute {Y_ : [M] {X I+I +1

{xIT+I {Yl

Compute p]+l = {xIT {yi ÷÷I 1

Compute {YI+I

{Y}
j+1

112

Total for step 3

Step 3 is repeated from

j = I ...... x
1

No. of Mult. or

Divisions

3

2
n

2
n

2n+ 1

2n

2n2+ 4n + I

No. of Add. or

Subtractions

8n 3- gn 2+ n

6

2
n - n

2
n - n

2n - 2

2n2+ n - 3

Then, total number of multiplications and divisions =

k[ ik (4n3_n) +"g- W
|=1

(2nS+gn2-Sn) + xi(2n2+4n +1) ]
(A.Z)

Total number of additions and subtractions =

k (8n3_gn2+n) +
6 k[Yl_. -7 (n3+3n2-n)

I=1
+ x l(2n2+n - 3) ]

(A. 2)
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A.2) Generation of _ Boundary Flexibility Vectors:

Assume {ql} = boundary flexibility vector number i

Step Operation

Obtain [K] -1

Compute {X i} = [M] {ql}

Compute {qi}1 = [K]-I{xI}

Normalizing

T
mm _m

cM : lqi 1[Ml{qi[1

I O•

{ql_l - GM {q1_1

Total for step 2

Step 2 is repeated for
i = 1........

Orthogonalizing

Compute cj= {q[}r[M]{q]}

• • @

Compute {ql}={ql}-cj{q]}

Total for step 3

Where j = 1....... i-I

Step 3 is repeated for

i=2 .......

No. of Mult. or

Divisions

3

2
n

2
n

2
n+ n

n

3n2+ 2n

2
n+n

n

2
n+2n

No. of Add. or

Subtractions

8n 3- 9n2+ n

6

2
n - n

2
n - n

2
n - 1

3n 2- 2n - 1

2
n- 1

n

2
n+n- 1
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Total number of repetitions for step number 3 = (I+2+3 .... C_-l))

k=l

d_ C_-1)

Hence total number of multiplications and divisions =

4 3 _2 + 5,_ 2 3_, 2 + 3_ -1

( --_-- ) n + C 2 ) n + ( 3 ) n CA.3)

Total number of additions and subtractions =

4 _2+ 5_ -3 3_2-15_ +I

( -_-- ) n3+ ( 2 ) n2+ ( 6 ) n - C --£2E_. ) CA. 4)
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Appendix C

Proportional Damping Matrix

Proportional damping matrix [C], (see Bathe [18] and Clough

and Penzien [18]),

where

damping

is given by

it] = _ [M] + # [K] (C. 1)

[M] = mass matrix

[K] = stiffness matrix

and _ are constants to be determined from two given

ratios corresponding to two unequal frequencies of

vibrations.

Assume mode shape {#i} has a frequency _i" Pre and post multiply

both sides of equation (C.i) by {¢_} and {¢i} respectively

2 _i_l = _ + _ 2 (C.2)i

where _I = damping ratio of mode shape i.

By substituting, in equation (C.2), any two unequal frequencies

and their corresponding assumed damping ratios, _ and _ can be

calculated from the resulting two simultaneous equations. The

damping ratio of any other natural frequency is obtained from:

o_ + _ (2

_l = ! (C.3)
2_

l

/
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